
DISTRIBUTED SYSTEMS II

FAULT-TOLERANT BROADCAST

Prof Philippas Tsigas

Distributed Computing and Systems Research Group

Broadcast

B

A

C

m

m

deliver

broadcast

deliver

Fault-Tolerant Broadcast

Terminology:

• broadcast(m) a process broadcasts a message to

the others

• deliver(m) a process delivers a message to itself

3

Best-effort broadcast

Reliable broadcast

Uniform broadcast

…

P1

P2

P3

Broadcast abstractions

Modules of a process

request (deliver)

indication

(deliver)

indication

request (deliver)

indication
(deliver)

request (deliver)

indication

Broadcast

Models:

• Synchronous vs.

asynchronous

• Types of process

failures

• Types of

communication failures

• Network topology

• Deterministic vs.

randomized

6

Reliable Broadcast

Three conditions

• Agreement: all correct processes eventually deliver

same set of messages

• Validity: set of messages delivered by correct

processes includes all messages broadcasted by

correct processes

• Integrity: each correct process P delivers a message

from correct process Q at most once, and only if Q

actually broadcasted it

7

Reliable Broadcast

What about faulty processes?

Definition: A property is uniform if faulty processes satisfy it as

well.

• Uniform agreement:
• If a process (correct or faulty) delivers m,

then all correct processes eventually deliver m.

• Uniform integrity:
• For every broadcasted message m,

every process (correct or not) delivers m at most once, and

only if some process has broadcasted m

8

Reliable broadcast

m1

m1

crash p1

p2

p3

m2

delivery delivery
m2

crash

delivery

delivery delivery

Uniform reliable broadcast

m1

m1

crash p1

p2

p3

m2

delivery delivery

m2

crash

delivery delivery

delivery delivery

Reliable Broadcast

How can we implement Reliable Broadcast?

Model

• Asynchronous

• Benign process and link failures only

• No network partitions

11

Reliable Broadcast

Assume we have send(m) and receive(m) primitives

• Transmit and send messages across a link

• If P sends m to Q, and link correct, then Q eventually

receives m

• For all m, Q receives m at most once from P, and

• only if P actually sent m

12

13

Reliability of one-to-one communication

 validity:
– any message in the outgoing message buffer is eventually delivered to

the incoming message buffer;

 integrity:
– the message received is identical to one sent, and no messages are

delivered twice.

14

 validity:
– any message in the outgoing message buffer is eventually delivered to

the incoming message buffer;

 integrity:
– the message received is identical to one sent, and no messages are

delivered twice.

•

integrity

 by use checksums, reject duplicates (e.g. due to retries).

If allowing for malicious users, use security techniques

How do we achieve validity and integrity?

validity - by use of acknowledgements and retries

Reliable Broadcast

R-broadcast(m)

 uniquely tag m with sender and sequence number

 send(m) to all neighbours (including self)

 end R-broadcast

R-deliver(m)

 upon receive(m) do

 if i have not already delivered m

 then if I am not the sender of m

 then send m to all neighbours

 endif

 deliver(m)

 endif

end R-deliver

15

Reliable Broadcast

In an asynchronous system

o Where every two correct processes are connected

via a path that never fails,

o the previous algorithm implements reliable

broadcast with uniform integrity:
• For every broadcasted message m,

• every process (correct or not) delivers m at most once, and

• only if some process broadcast m.

16

Algorithm idea (rb)

m

m

p1

p2

p3

crash

m

m

delivery

delivery

TODO

 Prove Agreement, Validity and Integrity

18

Reliable Broadcast

In an asynchronous system

• where every two correct processes are connected

via a path that never fails, and

• only receive omissions occur,

• then the algorithm satisfies uniform agreement:
• If a process (correct or faulty) delivers m,

• then all correct processes eventually deliver m.

19

TODO

 Extend the previous Proof for Uniform Agreement

20

Ordering (1)

 So far, we did not consider ordering among
messages; In particular, we considered messages
to be independent

 Two messages from the same process might not
be delivered in the order they were broadcast

Limitations of FIFO Broadcast

Scenario:

• User A broadcasts a message to a mailing list/Board

• B delivers that article

• B broadcasts reply

• C delivers B’s response without A´s original

message

• and misinterprets the message

22

Intuitions

 A message m1 that causes a message m2 might
be delivered by some process after m2

 Causal broadcast alleviates the need for the
application to deal with such dependencies

FIFO ?

p1

p2

p3

m2

delivery

delivery

delivery

m1

m1
delivery

m2

delivery

delivery

FIFO Broadcast

• Same as reliable, plus

• All messages broadcast by same sender delivered

in order sent

25

FIFO Broadcast

msgBag=0

Next[Q]=1 for all processes Q

F-broadcast(m)

 R-broadcast(m)

F-deliver(m)

 upon R-deliver(m) do

 Q := sender(m)

 msgBag := msgBagU{m}

 while (ᴲ m´ in msgBag : sender(m´)=Q and seq (m´) = next[Q]) do

 F-deliver(m´)

 next[Q] := next[Q]+1

 msgBag:=msqBag-{m´}

 endwhile

26

FIFO Broadcast

Theorem 1: Given a reliable broadcast algorithm this

algorithm is uniform FIFO.

TODO: Prove it.

Theorem 2: if the reliable broadcast algorithm satisfies

uniform agreement, so does this algorithm.

TODO: Prove it.

27

Causality ?

p1

p2

p3

m2

delivery

delivery

delivery

m1

m1
delivery

delivery

delivery

m2

Causal Broadcast

prevDel is

 sequence of messages that P C-delivered since its last C-broadcast

C-broadcast(m)

 F-broadcast(prevDel●m)

 prevDel:=Ø

C-deliever(m)

 upon F-deliever(m1,m2,...,ml) do

 for i in 1..l do

 if P has not previously C-delivered mi

 then C-deliver(mi)

 prevDel:=prevDel●mi

 29

Causal Broadcast

Theorem 1: If the FIFO broadcast algorithm is Uniform

FIFO, this is a uniform causal broadcast algorithm.

Theorem 2: if the FIFO broadcast satisfies Uniform

Agreement, so does this one.

30

Limitation of Causal Broadcast

Causal broadcast does not impose any order on

unrelated messages.

Two correct processes can deliver operations/request

in different order.

31

32

Total, FIFO and causal ordering of multicast messages

F3

F1

F2

T2

T1

P1 P2 P3

Time

C3

C1

C2

Figure 11.12

Notice the consistent ordering

of totally ordered messages T1

and T2.

They are opposite to real time.

The order can be arbitrary

it need not be FIFO or causal

and the causally related

messages C1 and C3

•

Atomic Broadcast

Requires that all correct processes deliver all

messages in the same order.

Implies that all correct processes see the same view of

the world.

33

Atomic Broadcast

Theorem: Atomic broadcast is impossible in

asynchronous systems.

Equivalent to consensus problem.

34

Review of Consensus

35

3 8 1

8 8 8

FLP

Theorem: Consensus is impossible in any

asynchronous system if one process can halt.

[Fisher, Lynch, Peterson 1985]

36

Atomic Broadcast

Theorem 1: Any atomic broadcast algorithm solves

consensus.

• Everybody does an Atomic Broadcast

• Decides first value delivered

Theorem 2: Atomic broadcast is impossible in any

asynchronous system if one process can halt.

37

38

Figure 11.14

Total ordering using a sequencer

A process wishing to TO-multicast m to g attaches a unique id,

id(m) and sends it to the sequencer and the members.

The sequencer keeps sequence number sg for group g

When it B-delivers the message it multicasts an ‘order’

message to members of g and increments sg.

Other processes: B-deliver <m,i>

 put <m,i> in hold-back queue

B-deliver order message, get g and S

and i from order message

wait till <m,i> in queue and S = rg,

TO-deliver m and set rg to S+1

•

Atomic Broadcast

Consensus is solvable in:

• Synchronous systems (we will discuss such an

algorithm that works in f+1 rounds)

• Certain semi-synchronous systems

Consensus is also solvable in

• Asynchronous systems with randomization

• Asynchronous systems with failure-detectors

39

SLIDES FROM THE BOOK TO HAVE A LOOK AT

 Please check aslo the slides from your book.

 I appned them here.

40

Copyright © George

Coulouris, Jean Dollimore,

Tim Kindberg 2001

email: authors@cdk2.net

This material is made

available for private study

and for direct use by

individual teachers.

It may not be included in any

product or employed in any

service without the written

permission of the authors.

Viewing: These slides

must be viewed in

slide show mode.

Teaching material

based on Distributed

Systems: Concepts

and Design, Edition 3,

Addison-Wesley 2001.

 Distributed Systems Course

Coordination and Agreement

•11.4 Multicast communication

•this chapter covers other types of coordination and

agreement such as mutual exclusion, elections and

consensus. We will study only multicast.

•But we will study the two-phase commit protocol for

transactions in Chapter 12, which is an example of

consensus

•We also omit the discussion of failure detectors

which is relevant to replication

42

Revision of IP multicast (section 4.5.1 page154)

 IP multicast – an implementation of group communication

– built on top of IP (note IP packets are addressed to computers)

– allows the sender to transmit a single IP packet to a set of computers that
form a multicast group (a class D internet address with first 4 bits 1110)

– Dynamic membership of groups. Can send to a group with or without joining it

– To multicast, send a UDP datagram with a multicast address

– To join, make a socket join a group (s.joinGroup(group) - Fig 4.17) enabling it
to receive messages to the group

 Multicast routers
– Local messages use local multicast capability. Routers make it efficient by

choosing other routers on the way.

 Failure model
– Omission failures  some but not all members may receive a message.

 e.g. a recipient may drop message, or a multicast router may fail

– IP packets may not arrive in sender order, group members can receive
messages in different orders

 •

How can you restrict a multicast to the local area network? Give two reasons for restricting the scope of a multicast

message

43

Introduction to multicast

 Multicast communication requires coordination and
agreement. The aim is for members of a group to
receive copies of messages sent to the group

 Many different delivery guarantees are possible
– e.g. agree on the set of messages received or on delivery ordering

 A process can multicast by the use of a single
operation instead of a send to each member
– For example in IP multicast aSocket.send(aMessage)

– The single operation allows for:

 efficiency I.e. send once on each link, using hardware multicast when
available, e.g. multicast from a computer in London to two in Beijing

 delivery guarantees e.g. can’t make a guarantee if multicast is
implemented as multiple sends and the sender fails. Can also do ordering

•

Many projects - Amoeba, Isis, Transis, Horus (refs p436) What is meant by[the term broadcast ?

44

System model

 The system consists of a collection of processes which can
communicate reliably over 1-1 channels

 Processes fail only by crashing (no arbitrary failures)

 Processes are members of groups - which are the
destinations of multicast messages

 In general process p can belong to more than one group

 Operations
– multicast(g, m) sends message m to all members of process group g

– deliver (m) is called to get a multicast message delivered. It is different from
receive as it may be delayed to allow for ordering or reliability.

 Multicast message m carries the id of the sending process
sender(m) and the id of the destination group group(m)

 We assume there is no falsification of the origin and
destination of messages

•

45

Open and closed groups

 Closed groups
– only members can send to group, a member delivers to itself

– they are useful for coordination of groups of cooperating servers

 Open
– they are useful for notification of events to groups of interested processes

Closed group Open group

Figure 11.9

•

Does IP multicast support open and closed groups?

46

Reliability of one-to-one communication(Ch.2 page 57)

 The term reliable 1-1 communication is defined in

terms of validity and integrity as follows:

 validity:
– any message in the outgoing message buffer is eventually delivered to

the incoming message buffer;

 integrity:
– the message received is identical to one sent, and no messages are

delivered twice.

•

How do we achieve validity?

integrity

 by use checksums, reject duplicates (e.g. due to retries).

If allowing for malicious users, use security techniques

How do we achieve integrity?

validity - by use of acknowledgements and retries

47

11.4.1 Basic multicast

 A correct process will eventually deliver the message
provided the multicaster does not crash
– note that IP multicast does not give this guarantee

 The primitives are called B-multicast and B-deliver

 A straightforward but ineffective method of implementation:
– use a reliable 1-1 send (i.e. with integrity and validity as above)

 To B-multicast(g,m): for each process p e g, send(p, m);

 On receive (m) at p: B-deliver (m) at p

 Problem
– if the number of processes is large, the protocol will suffer from ack-implosion

•

What are ack-implosions?

A practical implementation of Basic Multicast may be

achieved over IP multicast (on next slide, but not shown)

49

11.4.2 Reliable multicast

 The protocol is correct even if the multicaster crashes

 it satisfies criteria for validity, integrity and agreement

 it provides operations R-multicast and R-deliver

 Integrity - a correct process, p delivers m at most once.
Also p e group(m) and m was supplied to a multicast
operation by sender(m)

 Validity - if a correct process multicasts m, it will eventually
deliver m

 Agreement - if a correct process delivers m then all correct
processes in group(m) will eventually deliver m

•

integrity as for 1-1 communication

validity - simplify by choosing sender as the one process

agreement - all or nothing - atomicity, even if multicaster crashes

50

Reliable multicast algorithm over basic multicast

 processes can belong to several closed groups

Figure 11.10

primitives R-multicast and R-deliver

to R-multicast a message, a process B-multicasts it to

processes in the group including itself

when a message is B-delivered, the recipient B-multicasts

it to the group, then R-delivers it. Duplicates are detected.

Validity - a correct process will B-deliver to itself Integrity - because the reliable 1-1 channels used for B-multicast

guarantee integrity

Agreement - every correct process B-multicasts the message to the others. If

p does not R-deliver then this is because it didn’t B-deliver - because no

others did either.

What can you say about the performance of this algorithm? • Is this algorithm correct in an asynchronous system?

Reliable multicast can be implemented efficiently over IP

multicast by holding back messages until every member can

receive them. We skip that.

51

Reliable multicast over IP multicast (page 440)

 This protocol assumes groups are closed. It uses:
– piggybacked acknowledgement messages

– negative acknowledgements when messages are missed

 Process p maintains:
– Sp

g a message sequence number for each group it belongs to and

– Rq
g sequence number of latest message received from process q to g

 For process p to R-multicast message m to group g
– piggyback Sp

g and +ve acks for messages received in the form <q, Rqg >

– IP multicasts the message to g, increments Sp
g by 1

A process on receipt by of a message to g with S from p
–Iff S=Rp

g+1 R-deliver the message and increment Rp
g
 by 1

–If S≤ Rp
g
 discard the message

–If S> Rp
g
 + 1 or if R<Rq

g (for enclosed ack <q,R>)

then it has missed messages and requests them with negative acknowledgements

puts new message in hold-back queue for later delivery

the piggybacked values in a message allow recipients to learn about

messages they have not yet received

•

52

The hold-back queue for arriving multicast messages

 The hold back queue is not necessary for reliability as in the implementation using
IP muilticast, but it simplifies the protocol, allowing sequence numbers to
represent sets of messages. Hold-back queues are also used for ordering
protocols.

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming

messages

When delivery
guarantees are
met

Figure 11.11

•

53

Reliability properties of reliable multicast over IP

 Integrity - duplicate messages detected and rejected.

IP multicast uses checksums to reject corrupt messages

 Validity - due to IP multicast in which sender delivers to itself

 Agreement - processes can detect missing messages. They

must keep copies of messages they have delivered so that

they can re-transmit them to others.

 discarding of copies of messages that are no longer needed :
– when piggybacked acknowledgements arrive, note which processes have

received messages. When all processes in g have the message, discard it.

– problem of a process that stops sending - use ‘heartbeat’ messages.

 This protocol has been implemented in a practical way in

Psynch and Trans (refs. on p442)

•

54

11.4.3 Ordered multicast

 The basic multicast algorithm delivers messages to processes in an

arbitrary order. A variety of orderings may be implemented:

 FIFO ordering

– If a correct process issues multicast(g, m) and then multicast(g,m’), then

every correct process that delivers m’ will deliver m before m’ .

 Causal ordering

– If multicast(g, m)  multicast(g,m’), where  is the happened-before relation

between messages in group g, then any correct process that delivers m’ will

deliver m before m’ .

 Total ordering

– If a correct process delivers message m before it delivers m’, then any other

correct process that delivers m’ will deliver m before m’.

 Ordering is expensive in delivery latency and bandwidth consumption

•

55

Total, FIFO and causal ordering of multicast messages

these definitions do not imply

reliability, but we can define

atomic multicast - reliable and

totally ordered.

F3

F1

F2

T2

T1

P1 P2 P3

Time

C3

C1

C2

Figure 11.12

Notice the consistent ordering

of totally ordered messages T1

and T2.

They are opposite to real time.

The order can be arbitrary

it need not be FIFO or causal

Note the FIFO-related

messages F1 and F2

and the causally related

messages C1 and C3

Ordered multicast delivery is expensive in bandwidth and

latency. Therefore the less expensive orderings (e.g.

FIFO or causal) are chosen for applications for which

they are suitable

•

56

Display from a bulletin board program

 Users run bulletin board applications which multicast messages

 One multicast group per topic (e.g. os.interesting)

 Require reliable multicast - so that all members receive messages

 Ordering:

Bulletin board: os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

Figure 11.13

total (makes

the numbers

the same at

all sites)

FIFO (gives sender order

causal (makes replies

come after original

message)

•

57

Implementation of FIFO ordering over basic multicast

 We discuss FIFO ordered multicast with operations
FO-multicast and FO-deliver for non-overlapping groups. It
can be implemented on top of any basic multicast

 Each process p holds:
– Sp

g a count of messages sent by p to g and

– Rq
g the sequence number of the latest message to g that p delivered from q

 For p to FO-multicast a message to g, it piggybacks Sp
g on

the message, B-multicasts it and increments Sp
g by 1

 On receipt of a message from q with sequence number S, p
checks whether S = Rq

g + 1. If so, it FO-delivers it.

 if S > Rq
g + 1 then p places message in hold-back queue

until intervening messages have been delivered. (note that B-
multicast does eventually deliver messages unless the
sender crashes)

 •

58

Implementation of totally ordered multicast

 The general approach is to attach totally ordered identifiers

to multicast messages
– each receiving process makes ordering decisions based on the identifiers

– similar to the FIFO algorithm, but processes keep group specific sequence

numbers

– operations TO-multicast and TO-deliver

 we present two approaches to implementing total ordered

multicast over basic multicast
1. using a sequencer (only for non-overlapping groups)

2. the processes in a group collectively agree on a sequence number for each

message

•

59

Figure 11.14

Total ordering using a sequencer

A process wishing to TO-multicast m to g attaches a unique id,

id(m) and sends it to the sequencer and the members.

The sequencer keeps sequence number sg for group g

When it B-delivers the message it multicasts an ‘order’

message to members of g and increments sg.

Other processes: B-deliver <m,i>

 put <m,i> in hold-back queue

B-deliver order message, get g and S

and i from order message

wait till <m,i> in queue and S = rg,

TO-deliver m and set rg to S+1

•

60

Discussion of sequencer protocol

 Since sequence numbers are defined by a
sequencer, we have total ordering.

 Like B-multicast, if the sender does not crash, all
members receive the message

•

Kaashoek’s protocol uses hardware-based multicast
The sender transmits one message to sequencer, then

the sequencer multicasts the sequence number and the message

but IP multicast is not as reliable as B-multicast so the sequencer stores
messages in its history buffer for retransmission on request

members notice messages are missing by inspecting sequence numbers

What are the potential problems with

using a single sequencer?

What can the sequencer do about its history buffer becoming full? Members piggyback on their messages the latest sequence number they have seen What happens when some member stops multicasting? Members that do not multicast send heartbeat messages (with a sequence number)

61

The ISIS algorithm for total ordering

 this protocol is for open or closed groups

2

1

1

2

2

1 Message

P 2

P 3

P 1

P 4

3 Agreed Seq

3

3

Figure 11.15

1. the process P1 B-multicasts a

message to members of the group

3. the sender uses the proposed

numbers to generate an agreed

number

2. the receiving processes propose

numbers and return them to the sender

•

62

ISIS total ordering - agreement of sequence numbers

 Each process, q keeps:
– Aq

g the largest agreed sequence number it has seen and

– Pq
g its own largest proposed sequence number

 1. Process p B-multicasts <m, i> to g, where i is a unique
identifier for m.

 2. Each process q replies to the sender p with a proposal
for the message’s agreed sequence number of
– Pq

g := Max(Aq
g, P

q
g) + 1.

– assigns the proposed sequence number to the message and places it in its
hold-back queue

 3. p collects all the proposed sequence numbers and selects
the largest as the next agreed sequence number, a.
It B-multicasts <i, a> to g. Recipients set Aq

g := Max(Aq
g, a) ,

attach a to the message and re-order hold-back queue.

•

63

Discussion of ordering in ISIS protocol

 Hold-back queue
 ordered with the message with the smallest sequence

number at the front of the queue

 when the agreed number is added to a message, the queue
is re-ordered

 when the message at the front has an agreed id, it is
transferred to the delivery queue
– even if agreed, those not at the front of the queue are not transferred

 every process agrees on the same order and delivers
messages in that order, therefore we have total ordering.

 Latency
– 3 messages are sent in sequence, therefore it has a higher latency than

sequencer method

– this ordering may not be causal or FIFO

proof of total ordering on page 448

•

64

Causally ordered multicast

 We present an algorithm of Birman 1991 for causally

ordered multicast in non-overlapping, closed groups.

It uses the happened before relation (on multicast

messages only)
– that is, ordering imposed by one-to-one messages is not taken into

account

 It uses vector timestamps - that count the number of

multicast messages from each process that

happened before the next message to be multicast

•

65

Causal ordering using vector timestamps

Figure 11.16

each process has its own

vector timestamp To CO-multicast m to g, a process adds 1 to its

entry in the vector timestamp and

B-multicasts m and the vector timestamp

When a process B-delivers m, it places it in a

hold-back queue until messages earlier in the

causal ordering have been delivered:-

a) earlier messages from same sender have been
delivered

b) any messages that the sender had delivered when it
sent the multicast message have been delivered

then it CO-delivers the message and

updates its timestamp Note: a process can immediately CO-deliver to

itself its own messages (not shown)
•

66

Comments

 after delivering a message from pj, process pi
updates its vector timestamp
– by adding 1 to the jth element of its timestamp

 compare the vector clock rule where
Vi[j] := max(Vi[j], t[j]) for j=1, 2, ...N
– in this algorithm we know that only the jth element will increase

 for an outline of the proof see page 449

 if we use R-multicast instead of B-multicast then the
protocol is reliable as well as causally ordered.

 If we combine it with the sequencer algorithm we get
total and causal ordering

•

67

Comments on multicast protocols

 we need to have protocols for overlapping groups

because applications do need to subscribe to

several groups

 definitions of ‘global FIFO ordering’ etc on page 450

and some references to papers on them

 multicast in synchronous and asynchronous systems
– all of our algorithms do work in both

 reliable and totally ordered multicast
– can be implemented in a synchronous system

– but is impossible in an asynchronous system (reasons discussed in

consensus section - paper by Fischer et al.)

•

68

Summary

 Multicast communication can specify requirements for reliability and
ordering, in terms of integrity, validity and agreement

 B-multicast
– a correct process will eventually deliver a message provided the multicaster

does not crash

 reliable multicast
– in which the correct processes agree on the set of messages to be delivered;

– we showed two implementations: over B-multicast and IP multicast

 delivery ordering

– FIFO, total and causal delivery ordering.

– FIFO ordering by means of senders’ sequence numbers

– total ordering by means of a sequencer or by agreement of sequence
numbers between processes in a group

– causal ordering by means of vector timestamps

 the hold-back queue is a useful component in implementing
multicast protocols •

