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Fault-Tolerant Broadcast 

Terminology: 

• broadcast(m) a process broadcasts a message to 

the others 

• deliver(m) a process delivers a message to itself 
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Modules of a process 
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Broadcast 

Models: 

• Synchronous vs. 

asynchronous 

• Types of process 

failures 

• Types of 

communication failures 

• Network topology 

• Deterministic vs. 

randomized 
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Reliable Broadcast 

Three conditions 

• Agreement: all correct processes eventually deliver 

same set of messages 

• Validity: set of messages delivered by correct 

processes includes all messages broadcasted by 

correct processes 

• Integrity: each correct process P delivers a message 

from correct process Q at most once, and only if Q 

actually broadcasted it 
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Reliable Broadcast 

What about faulty processes? 

 

Definition: A property is uniform if faulty processes satisfy it as 

well. 

 

• Uniform agreement: 
• If a process (correct or faulty) delivers m, 

then all correct processes eventually deliver m. 

• Uniform integrity: 
• For every broadcasted message m, 

every process (correct or not) delivers m at most once, and 

only if some process has broadcasted m 
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Reliable broadcast 
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Uniform reliable broadcast 
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Reliable Broadcast 

How can we implement Reliable Broadcast? 

 

Model 

• Asynchronous 

• Benign process and link failures only 

• No network partitions 
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Reliable Broadcast 

Assume we have send(m) and receive(m) primitives 

• Transmit and send messages across a link 

• If P sends m to Q, and link correct, then Q eventually 

receives m 

• For all m, Q receives m at most once from P, and 

• only if P actually sent m 
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Reliability of one-to-one communication 

 validity:  
– any message in the outgoing message buffer is eventually delivered to 

the incoming message buffer; 

 integrity: 
– the message received is identical to one sent, and no messages are 

delivered twice. 
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 validity:  
– any message in the outgoing message buffer is eventually delivered to 

the incoming message buffer; 

 integrity: 
– the message received is identical to one sent, and no messages are 

delivered twice. 

• 

integrity  

 by use checksums, reject duplicates (e.g. due to retries).  

If allowing for malicious users, use security techniques 

How do we achieve validity and integrity? 

validity - by use of acknowledgements and retries 



Reliable Broadcast 

R-broadcast(m) 

 uniquely tag m with sender and sequence number 

 send(m) to all neighbours (including self) 

 end R-broadcast 

 

R-deliver(m) 

 upon receive(m) do 

  if i have not already delivered m 

   then if I am not the sender of m 

    then send m to all neighbours 

    endif 

   deliver(m) 

   endif 

end R-deliver 
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Reliable Broadcast 

In an asynchronous system 

o Where every two correct processes are connected 

via a path that never fails, 

o the previous algorithm implements reliable 

broadcast with uniform integrity: 
• For every broadcasted message m, 

• every process (correct or not) delivers m at most once, and  

• only if some process broadcast m. 
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Algorithm idea (rb) 
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TODO 

 Prove Agreement, Validity and Integrity 
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Reliable Broadcast 

In an asynchronous system 

• where every two correct processes are connected 

via a path that never fails, and 

• only receive omissions occur, 

• then the algorithm satisfies uniform agreement: 
• If a process (correct or faulty) delivers m, 

• then all correct processes eventually deliver m.   
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TODO 

 Extend the previous Proof for Uniform Agreement  
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Ordering (1) 

 So far, we did not consider ordering among 
messages; In particular, we considered messages 
to be independent 

  Two messages from the same process might not 
be delivered in the order they were broadcast 

 



Limitations of FIFO Broadcast 

Scenario: 

• User A broadcasts a message to a mailing list/Board 

• B delivers that article 

• B broadcasts reply 

• C delivers B’s response without A´s original 

message 

• and misinterprets the message 
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Intuitions 

 A message m1 that causes a message m2 might 
be delivered by some process after m2 

 

 Causal broadcast alleviates the need for the 
application to deal with such dependencies 

 



FIFO ? 
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FIFO Broadcast 

• Same as reliable, plus 

• All messages broadcast by same sender delivered 

in order sent 
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FIFO Broadcast 

msgBag=0 

Next[Q]=1 for all processes Q 

 

F-broadcast(m) 

 R-broadcast(m) 

 

F-deliver(m) 

 upon R-deliver(m) do 

  Q := sender(m) 

  msgBag := msgBagU{m} 

  while (ᴲ m´ in msgBag : sender(m´)=Q and seq (m´) = next[Q]) do 

   F-deliver(m´) 

   next[Q] := next[Q]+1 

   msgBag:=msqBag-{m´} 

  endwhile 
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FIFO Broadcast 

Theorem 1: Given a reliable broadcast algorithm this 

algorithm is uniform FIFO. 

 

TODO: Prove it. 

 

Theorem 2: if the reliable broadcast algorithm satisfies 

uniform agreement, so does this algorithm. 

 

TODO: Prove it. 
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Causality ? 
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Causal Broadcast 

prevDel is 

 sequence of messages that P C-delivered since its last C-broadcast 

 

C-broadcast(m) 

 F-broadcast(prevDel●m) 

 prevDel:=Ø 

 

C-deliever(m) 

 upon F-deliever(m1,m2,...,ml) do 

  for i in 1..l do 

   if P has not previously C-delivered mi 

    then C-deliver(mi) 

   prevDel:=prevDel●mi 

 29 



Causal Broadcast 

Theorem 1: If the FIFO broadcast algorithm is Uniform 

FIFO, this is a uniform causal broadcast algorithm. 

 

Theorem 2: if the FIFO broadcast satisfies Uniform 

Agreement, so does this one. 
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Limitation of Causal Broadcast 

Causal broadcast does not impose any order on 

unrelated messages. 

 

Two correct processes can deliver operations/request 

in different order. 
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Total, FIFO and causal ordering of multicast messages 

F3

F1

F2
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Time
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C2

Figure 11.12 

Notice the consistent ordering 

of totally ordered messages T1 

and T2. 

They are opposite to real time. 

The order can be arbitrary 

it need not be FIFO or causal 

and the causally related 

messages C1 and C3 

 

• 



Atomic Broadcast 

Requires that all correct processes deliver all 

messages in the same order. 

 

Implies that all correct processes see the same view of 

the world. 
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Atomic Broadcast 

Theorem: Atomic broadcast is impossible in 

asynchronous systems. 

 

Equivalent to consensus problem. 
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Review of Consensus 
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FLP 

Theorem: Consensus is impossible in any 

asynchronous system if one process can halt. 

[Fisher, Lynch, Peterson 1985] 
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Atomic Broadcast 

Theorem 1: Any atomic broadcast algorithm solves 

consensus. 

 

• Everybody does an Atomic Broadcast 

• Decides first value delivered 

 

Theorem 2: Atomic broadcast is impossible in any 

asynchronous system if one process can halt. 
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Figure 11.14 

 
Total ordering using a sequencer 

A process wishing to TO-multicast m to g attaches a unique id, 

id(m) and sends it to the sequencer and the members. 

The sequencer   keeps sequence number sg for group g 

When it B-delivers the message it multicasts an ‘order’ 

message to members of g and increments sg. 

Other processes: B-deliver <m,i> 

 put <m,i> in hold-back queue  

B-deliver order message, get g and S 

and i from order message 

wait till <m,i> in queue and S = rg,  

TO-deliver  m and set rg to S+1 

• 



Atomic Broadcast 

Consensus is solvable in: 

• Synchronous systems (we will discuss such an 

algorithm that works in f+1 rounds) 

• Certain semi-synchronous systems 

 

Consensus is also solvable in 

• Asynchronous systems with randomization 

• Asynchronous systems with failure-detectors 
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SLIDES FROM THE BOOK TO HAVE A LOOK AT 

 Please check aslo the slides from your book. 

 I appned them here.  
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 Distributed Systems Course  

Coordination and Agreement 

•11.4     Multicast communication 

•this chapter covers other types of coordination and 

agreement such as mutual exclusion, elections and 

consensus. We will study only multicast. 

•But we will study the two-phase commit protocol for 

transactions in Chapter 12, which is an example of 

consensus 

•We also omit the discussion of failure detectors 

which is relevant to replication  
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Revision of IP multicast (section 4.5.1 page154) 

 IP multicast – an implementation of group communication 

– built on top of IP (note IP packets are addressed to computers)  

– allows the sender to transmit a single IP packet to a set of computers that 
form a multicast group (a class D internet address with first 4 bits 1110) 

– Dynamic membership of groups. Can send to a group  with or without joining it 

– To multicast, send a UDP datagram with a multicast address 

– To join, make a socket join a group (s.joinGroup(group) - Fig 4.17) enabling it 
to receive messages to the group 

 Multicast routers  
– Local messages use local multicast capability. Routers make it efficient by 

choosing other routers on the way.  

 Failure model  
– Omission failures  some but not all members may receive a message. 

 e.g. a recipient may drop message, or a multicast router may fail 

– IP packets may not arrive in sender order, group members can  receive 
messages in different orders 

 • 

How can you restrict a multicast to the local area network? Give two reasons for restricting the scope of a multicast 

message 
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Introduction to multicast 

 Multicast communication requires coordination and 
agreement. The aim is for members of a group to 
receive copies of messages sent to the group 

 Many different delivery guarantees are possible  
– e.g. agree on the set of messages received or on delivery ordering 

 A process can multicast by the use of a single 
operation instead of a send to each member 
– For example in IP multicast aSocket.send(aMessage) 

– The single operation allows for: 

 efficiency I.e. send once on each link, using hardware multicast when 
available, e.g. multicast from a computer in London to two in Beijing 

 delivery guarantees e.g. can’t make a guarantee if multicast is 
implemented as multiple sends and the sender fails. Can also do ordering 

• 

Many projects - Amoeba, Isis, Transis, Horus (refs p436) What is meant by[the term broadcast ? 
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System model 

 The system consists of a collection of processes which can 
communicate reliably over 1-1 channels 

 Processes fail only by crashing (no arbitrary failures) 

 Processes are members of groups - which are the 
destinations of multicast messages 

 In general process p can belong to more than one group 

 Operations  
– multicast(g, m) sends message m to all members of process group g 

– deliver (m) is called to get a multicast message delivered. It is different from 
receive as it may be delayed to allow for ordering or reliability. 

 Multicast message m carries the id of the sending process 
sender(m) and the id of the destination group group(m) 

 We assume there is no falsification of the origin and 
destination of messages 

• 
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Open and closed groups 

 Closed groups   
– only members can send to group, a member delivers to itself  

– they are useful for coordination of groups of cooperating servers 

 Open  
– they are useful for notification of events to groups of interested processes 

Closed group Open group

Figure 11.9 

• 

Does IP multicast support open and closed groups? 
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Reliability of one-to-one communication(Ch.2 page 57) 

 The term reliable 1-1 communication is defined in 

terms of validity and integrity as follows: 

 validity:  
– any message in the outgoing message buffer is eventually delivered to 

the incoming message buffer; 

 integrity: 
– the message received is identical to one sent, and no messages are 

delivered twice. 

• 

How do we achieve validity? 

integrity  

 by use checksums, reject duplicates (e.g. due to retries).  

If allowing for malicious users, use security techniques 

How do we achieve integrity? 

validity - by use of acknowledgements and retries 
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11.4.1 Basic multicast 

 A correct process will eventually deliver the message 
provided the multicaster does not crash 
– note that IP multicast does not give this guarantee 

 The primitives are called B-multicast and B-deliver 

 A straightforward but ineffective method of implementation: 
– use a reliable  1-1 send (i.e. with integrity and validity as above) 

  To B-multicast(g,m): for each process p e g, send(p, m); 

  On receive (m) at p: B-deliver (m) at p 

 Problem  
– if the number of processes is large, the protocol will suffer from ack-implosion 

 

• 

What are ack-implosions? 

A practical implementation of Basic Multicast may be 

achieved over IP multicast (on next slide, but not shown) 
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11.4.2 Reliable multicast 

 The protocol is correct even if the multicaster crashes 

 it satisfies criteria for validity, integrity and agreement 

 it provides operations R-multicast and R-deliver 

 Integrity - a correct process, p delivers m at most once.  
Also p e group(m) and m was supplied to a  multicast 
operation by sender(m) 

 Validity - if a correct process multicasts m, it will eventually 
deliver m 

 Agreement - if a correct process delivers m then all correct 
processes in group(m) will eventually deliver m 

• 

integrity as for 1-1 communication 

validity - simplify by choosing sender as the one process 

agreement - all or nothing - atomicity, even if multicaster crashes 
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Reliable multicast algorithm over basic multicast 

 processes can belong to several closed groups 

Figure 11.10 

primitives R-multicast and R-deliver 

to R-multicast a message, a process  B-multicasts it to 

processes in the group including itself 

when a message is B-delivered, the recipient B-multicasts 

it to the group, then R-delivers it. Duplicates are detected. 

Validity - a correct process will B-deliver to itself Integrity - because the reliable 1-1 channels used for B-multicast 

guarantee integrity  

Agreement - every correct process B-multicasts the message to the others. If 

p does not R-deliver then this is because it didn’t B-deliver - because no 

others did either. 

What can you say about the  performance of this algorithm? • Is this algorithm correct in an asynchronous system? 

Reliable multicast can be implemented efficiently over IP 

multicast  by holding back messages until every member can 

receive them. We skip that.  
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Reliable multicast over IP multicast (page 440) 

 This protocol assumes groups are closed.  It uses: 
– piggybacked acknowledgement messages 

– negative acknowledgements when messages are missed 

 Process p maintains: 
–  Sp

g a message sequence number for each group it belongs to and  

– Rq
g sequence number of latest message received from process q to g 

 For process p to R-multicast message m to group g 
– piggyback  Sp

g  and +ve acks for messages received in the form <q, Rqg > 

– IP multicasts the message  to g, increments Sp
g by 1 

A process on receipt by of a message to g with S from p 
–Iff S=Rp

g+1 R-deliver the message and  increment Rp
g
  by 1 

–If S≤ Rp
g
  discard the message 

–If S> Rp
g
 + 1 or if R<Rq

g (for enclosed ack <q,R>) 

then it has missed messages and requests them with negative acknowledgements 

puts new message in hold-back queue for later delivery 

the piggybacked values in a message allow recipients to learn about 

messages they have not yet received 

• 



52 

The hold-back queue for arriving multicast messages 

 The hold back queue is not necessary for reliability as in the implementation using 
IP muilticast, but it simplifies the protocol, allowing sequence numbers to 
represent sets of messages. Hold-back queues are also used for ordering 
protocols.  

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming

messages

When delivery 
guarantees are
met

Figure 11.11 

• 
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Reliability properties of reliable multicast over IP 

 Integrity - duplicate messages detected and rejected. 

IP multicast uses checksums to reject corrupt messages 

 Validity - due to IP multicast in which sender delivers to itself 

 Agreement - processes can detect missing messages. They 

must keep copies of messages they have delivered so that 

they can re-transmit them to others. 

 discarding of copies of messages that are no longer needed :  
– when piggybacked acknowledgements arrive, note which processes have 

received messages. When all processes in g have the message, discard it. 

– problem of a process that stops sending - use ‘heartbeat’ messages. 

 This protocol has been implemented in a practical way in 

Psynch and Trans (refs. on p442) 

• 
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11.4.3 Ordered multicast 

 The basic multicast algorithm delivers messages to processes in an 

arbitrary order. A variety of orderings may be implemented: 

 FIFO ordering 

– If a correct process issues multicast(g, m) and then multicast(g,m’ ), then 

every correct process that delivers m’ will deliver m before m’ . 

 Causal ordering 

– If multicast(g, m)  multicast(g,m’ ), where  is the happened-before relation 

between messages in group g, then any correct process that delivers m’  will 

deliver m before m’ .  

 Total ordering 

– If a correct process delivers message m before it delivers m’, then any other 

correct process that delivers m’  will deliver m before m’. 

 Ordering is expensive in delivery latency and bandwidth consumption 

• 
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Total, FIFO and causal ordering of multicast messages 

these definitions do not imply 

reliability, but we can define 

atomic multicast - reliable and 

totally ordered.  

F3

F1

F2

T2

T1

P1 P2 P3

Time

C3

C1

C2

Figure 11.12 

Notice the consistent ordering 

of totally ordered messages T1 

and T2. 

They are opposite to real time. 

The order can be arbitrary 

it need not be FIFO or causal 

Note the FIFO-related 

messages F1 and F2 

and the causally related 

messages C1 and C3 

 

Ordered multicast delivery is expensive in bandwidth and 

latency. Therefore the less expensive orderings (e.g. 

FIFO or causal) are chosen for applications for which 

they are suitable 

• 
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Display from a bulletin board program 

 Users run bulletin board applications which multicast messages 

 One multicast group per topic (e.g. os.interesting) 

 Require reliable multicast - so that all members receive messages 

 Ordering: 

Bulletin board:  os.interesting 

Item From Subject 

23 A.Hanlon Mach     

24 G.Joseph Microkernels 

25 A.Hanlon Re: Microkernels 

26 T.L’Heureux RPC performance 

27 M.Walker Re: Mach 

end 

Figure 11.13 

total (makes 

the numbers 

the same at 

all sites) 

FIFO (gives sender order 

causal (makes replies 

come after original 

message) 

• 
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Implementation of FIFO ordering over basic multicast 

 We discuss FIFO ordered multicast with operations  
FO-multicast and FO-deliver for non-overlapping groups. It 
can be implemented on top of any basic multicast 

 Each process p holds: 
–  Sp

g a count of messages sent by p to g and  

– Rq
g the sequence number of the latest message to g that p delivered from q 

 For p to FO-multicast a message to g, it piggybacks Sp
g on 

the message,  B-multicasts it and increments Sp
g by 1 

 On receipt of a message from q with sequence number S, p 
checks whether  S = Rq

g + 1. If so, it FO-delivers it.  

 if S > Rq
g + 1 then p  places message in hold-back queue 

until intervening messages have been delivered. (note that B-
multicast does eventually deliver messages unless the 
sender crashes) 

 • 
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Implementation of totally ordered multicast 

 The general approach is to attach totally ordered identifiers 

to multicast messages 
– each receiving process makes ordering decisions based on the identifiers  

– similar to the FIFO algorithm, but processes keep group specific sequence 

numbers 

– operations TO-multicast and TO-deliver 

 we present two approaches to implementing total ordered 

multicast over basic multicast 
1. using a sequencer (only for non-overlapping groups) 

2. the processes in a group collectively agree on a sequence number for each 

message 

 

 

• 



59 

Figure 11.14 

 
Total ordering using a sequencer 

A process wishing to TO-multicast m to g attaches a unique id, 

id(m) and sends it to the sequencer and the members. 

The sequencer   keeps sequence number sg for group g 

When it B-delivers the message it multicasts an ‘order’ 

message to members of g and increments sg. 

Other processes: B-deliver <m,i> 

 put <m,i> in hold-back queue  

B-deliver order message, get g and S 

and i from order message 

wait till <m,i> in queue and S = rg,  

TO-deliver  m and set rg to S+1 

• 
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Discussion of sequencer protocol 

 Since sequence numbers are defined by a 
sequencer, we have total ordering.  

 Like B-multicast, if the sender does not crash, all 
members receive the message 
 

 

• 

Kaashoek’s protocol uses hardware-based multicast  
The sender transmits one message to sequencer, then 

the sequencer multicasts the sequence number and the message 

but IP multicast is not as reliable as B-multicast so the sequencer stores 
messages in its history buffer for retransmission on request  

members notice messages are missing by inspecting sequence numbers 

What are the potential problems with 

using a single sequencer?  

What can the sequencer do about its history buffer becoming full? Members piggyback on their messages the latest sequence number they have seen What happens when some member stops multicasting? Members that do not multicast send heartbeat messages (with a sequence number) 
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The ISIS algorithm for total ordering 

 this protocol is for open or closed groups 

2 

1 

1 

2 

2 

1 Message 

P 2 

P 3 

P 1 

P 4 

3 Agreed Seq 

3 

3 

Figure 11.15 

1. the process P1  B-multicasts a 

message to members of the group 

3. the sender uses the proposed 

numbers to generate an  agreed 

number 

2. the  receiving processes propose 

numbers and return them to the sender 

• 
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ISIS total ordering - agreement of sequence numbers 

 Each process, q keeps: 
–  Aq

g the largest agreed sequence number it has seen and  

– Pq
g its own largest proposed sequence number 

 1.  Process p B-multicasts <m, i> to g, where i is a unique 
identifier for m.  

 2. Each process q replies to the sender p with a proposal 
for the message’s agreed sequence number of  
– Pq

g := Max(Aq
g, P

q
g ) + 1.  

– assigns the proposed sequence number to the message and places it in its 
hold-back queue 

 3. p collects all the proposed sequence numbers and selects 
the largest as the next agreed sequence number, a.  
It B-multicasts <i, a> to g. Recipients set Aq

g := Max(Aq
g, a ) , 

attach a to the message and re-order hold-back queue. 

• 
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Discussion of ordering in ISIS protocol 

 Hold-back queue 
 ordered with the message with the smallest sequence 

number at the front of the queue 

 when the agreed number is added to a message, the queue 
is re-ordered 

 when the message at the front has an agreed id, it is 
transferred to the delivery queue 
– even if agreed, those not at the front of the queue are not transferred 

 every process agrees on the same order and delivers 
messages in that order, therefore we have total ordering.  

 Latency 
– 3 messages are sent in sequence, therefore it has a higher latency than 

sequencer method 

– this ordering may not be causal or FIFO 

proof of total ordering on page 448 

• 
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Causally ordered multicast 

 We present an algorithm of Birman 1991 for causally 

ordered multicast in non-overlapping, closed groups. 

It uses the happened before relation (on multicast 

messages only) 
– that is, ordering imposed by one-to-one messages is not taken into 

account 

 It uses vector timestamps - that count the number of 

multicast messages from each process that 

happened before the next message to be multicast 
 

• 
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Causal ordering using vector timestamps 

Figure 11.16 

each process has its own 

vector timestamp To CO-multicast m to g, a process adds 1 to its 

entry in the vector timestamp and  

B-multicasts m and the vector timestamp 

When a process B-delivers m, it places it in a 

hold-back queue until messages earlier in the 

causal ordering have been delivered:- 

a) earlier messages from same sender have been 
delivered  

b) any messages that the sender had delivered when it 
sent the multicast message  have been delivered 

then it CO-delivers the message and 

updates its timestamp Note: a process can immediately CO-deliver to 

itself its own messages (not shown) 
• 
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Comments 

 after delivering a message from pj, process pi 
updates its vector timestamp  
– by adding 1 to the jth element of its timestamp 

 compare the vector clock rule where  
Vi[j] := max(Vi[j], t[j]) for j=1, 2, ...N 
– in this algorithm we know that only the jth element will increase 

 for an outline of the proof see page 449 

 if we use R-multicast instead of B-multicast then the 
protocol is reliable as well as causally ordered.  

 If we combine it with the sequencer algorithm we get 
total and causal ordering 

• 
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Comments on multicast protocols 

 we need to have protocols for overlapping groups 

because applications do need to subscribe to 

several groups 

 definitions of ‘global FIFO ordering’ etc on page 450 

and some references to papers on them 

 multicast in synchronous and asynchronous systems 
– all of our algorithms do work in both 

 reliable and totally ordered multicast  
– can be implemented in a synchronous system 

– but is impossible in an asynchronous system (reasons discussed in 

consensus section - paper by Fischer et al.) 

• 
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Summary 

 Multicast communication can specify requirements for reliability and 
ordering, in terms of integrity, validity and agreement 

 B-multicast  
– a correct process will eventually deliver a message provided the multicaster 

does not crash 

 reliable multicast  
– in which the correct processes agree on the set of messages to be delivered;  

– we showed two  implementations: over B-multicast and IP multicast 

 delivery ordering 

– FIFO, total  and causal delivery ordering.  

– FIFO ordering by means of senders’ sequence numbers 

– total ordering by means of a sequencer or  by agreement of sequence 
numbers between processes in a group 

– causal ordering by means of vector timestamps 

 the hold-back queue is a useful component in implementing 
multicast protocols • 


